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Abstract

We consider a decision-maker (DM) with convex preferences who faces

a set of risky actions and can delegate his choice to a randomization device.

Under convexity, the DM’s preferences admit a conservative multi-utility rep-

resentation: each utility generates an evaluation for each action, and actions

are ranked according to the lowest evaluation. Building on this multi-utility

representation, we characterize the set of optimal actions and propose an ef-

ficiency criterion to rank them. Next, we narrow our attention to deliberate

randomization for a DM with two utilities. In this case, we show that the

DM never needs to select more than two actions with positive probability and

study when the desire to randomize reveals information about risk attitude.

Finally, we apply our results to games where each player has two actions and

two utility functions. We show that incentives to randomize extend to strategic

settings and derive a new class of mixed Nash equilibria that we call “strict”

because players strictly prefer randomization. In general, convexity may lead

to a multiplicity of mixed Nash equilibria. However, we show that when they

exist, only strict equilibria are such that all the mixed actions are efficient.
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1 Introduction

Random choices interpreted as the outcome of deliberate randomization are the

object of theoretical and experimental works that study decision-making under

risk. The recent experimental effort to provide robust evidence about deliberate

randomization motivates the growing attention on theoretical models that can ra-

tionalize this observed pattern.1 Yet, while several appealing models belong to this

category, the lack of analytical tractability that characterizes a large class of them

limits their use in applied research.

Convexity is the axiom that captures preferences for randomization. It requires

that if a decision-maker (DM) is indifferent between two lotteries p and q, then any

convex combination between p and q is weakly preferred. Preferences that sat-

isfy convexity and few other rationality requirements admit a conservative multi-

utility representation: the DM has a set of utility functions and reacts to this mul-

tiplicity by evaluating each lottery with the utility function that yields the lowest

payoff.2 One can imagine either a DM with multiple selves or a Rawlsian planner

that aggregates the preferences of different individuals.3

In many economic problems, a DM chooses an action from a set of available

alternatives to maximize his well-being. Unfortunately, the conservative multi-

utility representation is not differentiable, and consequently, it is not possible to

use standard optimization techniques to characterize the properties of the set of

optimal actions. To overcome this issue, we provide a general characterization of

the DM’s optimal action(s) in terms of the strict upper-contour sets of the utilities

involved in the representation. In particular, we show that an action maximizes

the DM’s preferences if and only if the intersection of the strict upper-contour sets

of the ”worst-off” utilities (i.e., the ones whose evaluation of the DM’s action is the

1See for instance Agranov and Ortoleva (2017).
2Cerreia-Vioglio (2009) first studies the implications of convexity for preferences under risk.
3Cerreia-Vioglio (2009) describes a DM with multiple selves which is unsure about one or possi-

bly all of the following: the value of the decision outcome, future tastes, and degree of risk aversion.

2



lowest) is empty.4

Furthermore, we propose a notion of efficiency that strengthens the require-

ment of optimality in two ways. We start by calling an optimal action minimal if

no other action constitutes a Pareto improvement for the set of worst-off utilities

that it induces. We motivate this additional requirement by showing that minimal

actions induce the smallest set of worst-off utilities. Next, we define an action effi-

cient if it is minimal and there is no other action that constitutes a Pareto improve-

ment for the set of all utilities.5 We prove that there is always an efficient action

within the set of optimal actions. Consequently, this efficiency notion can always

serve as a selection criterion for the case of multiple optimal actions. Moreover, we

derive conditions that guarantee the uniqueness of the optimal action.

Our general analysis of the set of optimal actions and their properties lays the

groundwork for the second part of our paper, where aiming for higher tractability,

we turn to the analysis of deliberate randomization for a DM with two utilities.

In this setting, the DM never finds it optimal to select more than two actions with

positive probability. The value of this result is twofold. First, it shows that finding

optimal actions is easier in the two utility specification than in the generic finite

case because it is enough to focus on randomization over at most two actions. Sec-

ond, it provides a testable implication of this assumption: a DM with two utilities

should never be willing to pay any positive monetary amount to pick more than

two actions with positive probability.

We call randomization strictly beneficial when it allows the DM to achieve a

strictly greater payoff than with any pure action. If the DM is indifferent among all

the pure actions, randomization is always strictly beneficial unless preferences do

4Properties of maxmin optima have also been exploited in other contexts. For example, in

the theory of optimal auctions, Chung and Ely (2007) provide sufficient conditions for dominant-

strategy mechanisms to have maxmin foundation.
5In the auction context, Börgers (2017) refines Chung and Ely (2007)’s criterion in order to ex-

clude dominant-strategy mechanisms that he classifies as “dominated”. Our refinement notion is

stronger because we require efficient actions to be minimal.
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not degenerate to expected utility. In this scenario, we explicitly derive the support

of the optimal random choices. Moreover, we study the case of two pure actions,

which is relevant in experimental settings. We then use this result to characterize

when an observed preference for randomization can be used to rule out both risk

aversion and risk seeking attitudes in the cautious expected utility (C-EU) model,

which is a special case of the class of preferences that we consider.6

Finally, we apply our results to non-cooperative game theory, the main ana-

lytical tool to build formal economic models. One obstacle in studying games in

which players have non-expected utility preferences is that the notion of Nash

equilibrium often needs to be modified. For instance, the Nash requirement of

correct conjectures is not well-defined in models under uncertainty with multiple

beliefs. Instead, the class of convex preferences that we focus on does not feature

the same problem. While each player has multiple utility functions, the conjec-

ture is unique. Moreover, all the standard assumptions for the existence of a Nash

equilibrium hold for the class of convex preferences that we consider.

Specifically, we study a static game with two players with convex preferences.

Each player has two actions and two utility functions. We partition the possible

mixed equilibria into three categories: weak, partially strict, and strict. In weak

equilibria, players are indifferent in equilibrium between their mixed and pure

actions, as in the expected utility case. Partially strict and strict mixed equilibria

instead constitute an element of novelty. In these equilibria, at least one player

strictly prefers the equilibrium mixed action to the pure actions in the support. We

provide necessary conditions for the existence of these new types of equilibria and

we illustrate them in a simple coordination game. In this example, convexity may

lead to a multiplicity of mixed Nash equilibria. However, we show that when they

exist, only strict mixed Nash equilibria are such that both players play efficient

mixed actions.
6See Cerreia-Vioglio et al. (2015).
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1.1 Related literature

This paper contributes to the recent theoretical literature that studies stochastic

choice as the outcome of deliberate randomization.7 This strand of contributions

builds on the idea first proposed by Machina (1985) that individuals with non-

stochastic preferences over lotteries may have an explicit desire to randomize their

choices. Battigalli et al. (2017) develop a framework to model random choices un-

der uncertainty. Our paper, instead, focuses on choices under risk, building on

the multi-utility representation result obtained by Cerreia-Vioglio (2009) for pref-

erences that satisfy convexity. This representation is appealing because it encom-

passes several well-known decision criteria under risk, such as the cautious ex-

pected utility (C-EU) model of Cerreia-Vioglio et al. (2015) or the maxmin model

of Maccheroni (2002).

The premise of this paper is that the multi-utility representation in Cerreia-

Vioglio (2009) is not differentiable, so standard optimization techniques to study

random choices are not viable. Cerreia-Vioglio et al. (2020) make an analogous

remark for betweenness preferences that satisfy Dillenberger’s (2010) negative cer-

tainty independence axiom, such as the Gul’s (1991) model of disappointment

aversion. Given that negative certainty independence implies convexity, the repre-

sentation in Cerreia-Vioglio (2009) is more general. At the same time, our focus on

a finite set of utilities in practice allows for betweenness violations. For this reason,

we see our paper as complementary to Cerreia-Vioglio et al. (2020) for the analysis

of preferences in which randomization can be strictly beneficial.

A growing experimental literature supports the hypothesis that subjects make

stochastic decisions deliberately. Agranov and Ortoleva (2017) provide evidence

in favor of the class of convex preferences that we consider, showing that models

of bounded rationality or random preferences cannot rationalize subjects’ stochas-

tic behavior in their experiment. Consistently with the conservative multi-utility

7See Agranov and Ortoleva (2022) for a recent review of the literature.
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interpretation of convex preferences, hedging and diversification were the main

motivations behind this stochastic behavior. Agranov and Ortoleva (2020) push

this observation further, showing not only the existence of questions for which

subjects want to randomize but also their prevalence. Our paper provides new

testable predictions for models of deliberate randomization, deriving properties

of optimal random choices and conditions under which strict preferences for ran-

domization are inconsistent with both risk aversion and risk seeking attitudes.

Evidence of preferences for randomization extends to strategic settings. Agra-

nov et al. (2021) show that randomization is a stable and pervasive feature of sev-

eral choice environments, including games. In their experiment, a sizable part of

individuals displays preferences for randomization in individual decision prob-

lems but especially in games. Calford (2021) studies the role of mixed actions

for ambiguity averse players with maxmin expected utility preferences (Gilboa

and Schmeidler (1989)). He proves that the set of rationalizable strategies grows

larger as preferences for randomization weaken. We also apply our results to static

games. However, while each player has multiple utilities in our setting, the conjec-

ture is unique. Consequently, it is not necessary to modify the Nash equilibrium

notion, as is the case with models under ambiguity.8

Allen and Rehbeck (2021) also study preferences for randomization in settings

of strategic interaction by focusing on concave perturbed utility games. In their

framework, players’ preferences are represented by a general base utility index and

an additively separable concave perturbation function. By making different func-

tional form assumptions on the perturbation function, they construct and study

properties of the best response functions. Our framework differs because rather

than relying on utility perturbations, we start by imposing convexity on players’

preferences and exploit the general axiomatic representation in Cerreia-Vioglio

(2009) to model preferences for randomization. At the same time, in Section 6,

8See, for instance, Marinacci (2000).
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we provide a closed-form expression for the best response function under the as-

sumption that players have maxmin preferences and that randomization is strictly

beneficial. We then use this characterization to compute the set of all possible Nash

equilibria in a simple coordination problem.

1.2 Outline

The rest of the paper is organized as follows. Section 2 sets up the decision model.

Section 3 provides a general characterization of the set of DM’s optimal actions.

Section 4 deals with the efficiency and uniqueness of optimal actions. Section 5

studies the implications of deliberate randomization for a DM with two utilities.

Section 6 applies our results to the analysis of mixed Nash equilibria in a static

game where players have convex preferences. Section 7 summarizes the main find-

ings and concludes. All the proofs of the statements are collected in the appendix.

2 Model

This section begins with the introduction of the decision framework. After that,

we describe the conservative multi-utility model of Cerreia-Vioglio (2009) and the

additional assumptions we impose on his representation.

2.1 Decision framework

Following Luce and Raiffa (1957),9 a decision framework is a quartet 〈A, S, C, ρ〉,

where A is a finite set of conceivable pure actions, S is a finite set of states, C is a

finite set of consequences and ρ : A× S → C is the consequence function. Given a

generic set X, we denote by 4(X) the set of probability distributions over X. The

9Luce and Raiffa (1957) introduce this framework to study choice under uncertainty. Here, we

endow the DM with a subjective belief over the states.

7



DM can commit his actions to some random devices. We denote byA = 4(A) the

set of feasible actions.10

The DM has a belief µ ∈ 4(S) over the states. Every feasible action α, given a

belief µ induces a lottery according to the stochastic outcome function:

ρ̂ : A×4(S)→ 4(C).

The specification of the belief is relevant in Section 6, where we consider an appli-

cation of our results to game theory. In all the other sections, we omit the depen-

dence from the belief in the notation because it plays no specific role.

2.2 Preferences

We denote by E(α, v) the expected utility of action α, with utility v : C → R:

E(α, v) = ∑
a∈A

α(a) ∑
s∈S

µ(s)v (ρ(a, s)) .

We also indicate by %v the binary relation representing the preferences of an ex-

pected utility DM with utility v:

α %v β⇔ E(α, v) ≥ E(β, v),

with α, β ∈ A. Moreover, we denote by �v and ∼v the asymmetric and symmetric

parts of %v, respectively. Given an action α ∈ A, we denote by SUCSv(α) the strict

upper contour set of α for utility v. That is,

SUCSv(α) := {α′ ∈ A : α′ �v α}.

In words, SUCSv(α) is the set of actions that utility v strictly prefers to α.

When a preference % over A is complete, transitive, continuous and satisfies

convexity,11 Cerreia-Vioglio (2009) shows the existence of a utility function u that

104(A) is the set of conceivable actions. In principle, not all conceivable actions are feasible:

A ⊆ 4(A). In this paper, we assume A = 4(A).
11The preference relation % satisfies convexity if and only if for all α ∈ A, β ∈ A and λ ∈ (0, 1),

α ∼ β⇒ λα + (1− λ)β % α.
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represents % as follows: there exist a set of normalized utility functionsW and a

function U: R×W → [−∞,+∞] such that for all α ∈ A,12

u(α) = inf
v∈W

U [E(α, v), v] . (?)

For every utility v ∈ W , the DM computes the expected utility of action α and then

distorts it with the function U[·, v], which we assume to be strictly increasing in

the first argument.13 Of all possible distorted expected utility evaluations, the DM

adopts a conservative criterion assigning to α the smallest one. We further assume

thatW is finite so that the smallest evaluation is always well-defined. We call an

action optimal if it maximizes (?).

Because this representation relies on minimal assumptions for %, it encom-

passes several decision models under risk. If W is a singleton, the representa-

tion reduces to expected utility. When U [x, v] = x for all v ∈ W and x ∈ R,

we obtain the maxmin expected utility model of Maccheroni (2002). Finally, if

U [x, v] = v−1(x) for all v ∈ W and x ∈ R, we get the cautious expected utility

model of Cerreia-Vioglio et al. (2015).

Given an action α ∈ A, denote by Sα the support of α and by Mα the set of

worst-off utilities that α induces:

Mα := arg min
v∈W

U [E(α, v), v] .

Moreover, given a utility function v ∈ W , denote by Pv the set of pure actions for

which v belongs to the induced set of worst-off utilities:

Pv := {a ∈ A|v ∈ Ma}.
12We fix an arbitrary consequence c ∈ C and defineW =W1 = {v ∈ RC : v(c) = 1}.
13Cerreia-Vioglio (2009) proves that U[·, v] must be increasing in the first argument. The addi-

tional requirement that we impose is satisfied in the special cases of Maccheroni (2002) and Cerreia-

Vioglio et al. (2015).
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3 Optimal actions

Our main result characterizes the set of optimal actions in terms of the strict upper

contour sets of the worst-off utilities that these actions induce.

Proposition 1. Action α∗ ∈ A is optimal if and only if
⋂

v∈Mα∗
SUCSv(α∗) = ∅.

Proposition 1 establishes that an action is optimal whenever there is no other

action that is strictly better for all the worst-off utilities that the action induces.

Suppose that the intersection of the strict upper contour sets of all the worst-off

utilities that action α∗ induces is empty. Then, for all actions α ∈ A, there must

exists a utility v ∈ Mα∗ such that α∗ %v α. Consequently, action α∗ is optimal.

For the other direction, suppose that the intersection of the strict upper contour

sets of all the worst-off utilities that action α∗ induces is non-empty. Then, there

must exist an action α that is strictly better than α∗ for all utilities v ∈ Mα∗ . Given

that the set of utilitiesW is finite, the payoffs of action α∗ for utilities that do not

belong to Mα∗ must be larger than the payoff of the worst-off utilities in Mα∗ by

some finite amount, say ε > 0. Because all utilities are continuous, it is possible

to mix action α∗ with a little bit of α to make all utilities in Mα∗ better-off without

rendering anyone outside Mα∗ worst-off by more than ε. Therefore, action α∗ is not

optimal.

Proposition 1 hints at a strategy to verify whether an action α∗ is optimal: check

whether the intersection of the strict upper contour sets of all the worst-off utilities

in Mα∗ is empty. The next proposition introduces an indirect tool to simplify this

task.

Proposition 2. Action α∗ ∈ A is optimal if and only if
⋂

v∈Mα∗
SUCSv(α) = ∅ for all

α ∈ A with Sα ⊆ Sα∗ .

According to Proposition 2, an action α∗ is optimal whenever there are no ac-

tions α and α̃ such that the support of action α∗ contains the support of action α̃,
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and action α is strictly better than action α̃ for all utilities in Mα∗ . For instance,

suppose that for all utilities v ∈ Mα∗ and for some pure actions a ∈ Sα∗ and ã ∈ A,

we have ã �v a. By Proposition 2, we can conclude that α∗ is not optimal.

The argument for the proof of Proposition 2 goes as follows. Take an action α̃

with Sα̃ ⊆ Sα∗ and suppose that there exists another action α that is strictly better

for all utilities in Mα∗ . Given that the set of utilities W is finite, the payoffs of

action α∗ for utilities that do not belong to Mα∗ must be larger than the payoff of

the worst-off utilities in Mα∗ by some finite amount, say ε > 0. Because all utilities

are continuous, it is possible to add a little bit of α and subtract a little bit of α̃ from

action α∗ to make all utilities in Mα∗ better-off without rendering anyone outside

Mα∗ worse-off by more than ε. Notice that the resulting action is well-defined

because Sα̃ ⊆ Sα∗ . Therefore, action α∗ is not optimal.

3.1 Representation in the Marschak–Machina triangle

We conclude this section with a graphical representation of the results in Proposi-

tions 1 and 2. Figure 1 shows an example with three pure actions (a, b and c) and

three utility functions (v1, v2 and v3) using a revisitation of the Marschak–Machina

triangle.14 Every point in the triangle corresponds to the lottery associated with

an action. The figure also includes the indifference curves for the three utilities.

Given that the level of the indifference curves matters, we make it explicit through

the thickness of the curves. The indifference curves of utilities v1, v2, and v3 pass-

ing through α̂ have the same thickness and thus achieve the same level of utility.

At the same time, the indifference curve of utility v3 passing through α∗ is thicker

than the indifference curve passing through α̂ because it is associated with a higher

level of utility.

14The canonical Marschak–Machina triangle represents the set of all lotteries involving three

fixed outcomes. Here instead, we represent the set of all lotteries arising from random choices

that involve three actions.
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Figure 1: Example with A = 4({a, b, c}) andW = {v1, v2, v3}.

According to Proposition 1, an action α is optimal if there is no other action

that is strictly better for all utilities in Mα. For instance, let us consider the mixed

action α̂ and notice that Mα̂ = {v1, v2, v3}. Understanding whether action α̂ is

optimal amounts to check whether the intersection of the strict upper contour sets

of the three utilities at α̂ is empty. In Figure 1, the shaded red region is the strict

upper contour set for v1, the shaded blue region for v2, and the dotted green region

for v3. As it is clear from the figure, the intersection is empty: to make utility v2

strictly better-off, it is necessary to make utility v1 strictly worse-off and vice versa.

Therefore, by Proposition 1 action α̂ is optimal.

To appreciate the practical use of Proposition 2, consider a richer decision frame-

work with the same set of utility functions but with a larger set of pure actions A′
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such that {a, b, c} ⊂ A′. Suppose that we are interested in verifying whether an

action α with support Sα = A′ is optimal. Thanks to Proposition 2, it is still possi-

ble to address this task by looking at the Marschak–Machina triangle in Figure 1.

Indeed, if there are two actions in the triangle such that for all utilities in Mα, one

action is strictly better than the other, then by Proposition 2 α is not optimal.

4 Uniqueness and efficiency

Proposition 1 characterizes the set of optimal actions in terms of the strict upper

contour sets of the worst-off utilities. This section explores additional properties

that optimal actions might satisfy. Figure 1 shows that the set of optimal actions

does not need to be a singleton. In the example, this set consists of all actions in

the segment with extremes α̂ and α∗. The next proposition answers the following

question: under what condition is an optimal action unique?

Proposition 3. Let α∗ ∈ A be an optimal action. Then α∗ is unique if and only if there is

no action α ∈ A, with α∗ 6= α, such that α∗ ∼v α for all v ∈ Mα∗ .

Proposition 3 states that an optimal action α∗ is unique whenever there is no

action α that is indifferent to α∗ for all utilities in Mα∗ . If such action exists, it is

possible to mix α∗ with a little bit of α. The resulting new action keeps the set

of worst-off utilities fixed to Mα∗ maintaining the same level of minimum utility.

Conversely, suppose that there are two actions α∗ and α that are optimal. All util-

ities in Mα∗ weakly prefer action α to action α∗. Let us build a new action α̂ by

mixing action α∗ with a little bit of α. The resulting action α̂ is still optimal. Fur-

thermore, the set of utilities Mα̂ coincides with all the utilities in Mα∗ for which α∗

is indifferent to α. Therefore, the action α̂ is optimal and all the utilities in Mα̂ are

indifferent between actions α̂ and α∗.

If the condition in Proposition 3 fails, the set of optimal actions is not a single-

ton. To reduce the extent of this multiplicity, we propose an efficiency criterion that
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refines the set of optimal actions. The set of worst-off utilities Mα∗ plays a key role

in determining whether action α∗ is optimal. For this to be the case, there must be

no other action α that is strictly better than α∗ for all utilities in Mα∗ . A first natural

refinement is then to ask that there is no other action α that Pareto dominates α∗ in

Mα∗ . That is, there is no other action α such that α is weakly better than α∗ for all

utilities v ∈ Mα∗ , and α is strictly better than α∗ for at least one utility v ∈ Mα∗ .

This Pareto efficiency requirement in the set of worst-off utilities relates to the

following question: how large is the set of worst-off utilities? Suppose an optimal

action α∗ is not Pareto efficient in Mα∗ . In this case, it is possible to find another

action whose set of worst-off utilities is strictly smaller in the sense of set inclusion.

The following proposition formalizes this intuition.

Proposition 4. An optimal action α∗ is Pareto efficient in Mα∗ if and only if Mα∗ ⊆ Mα

for any other optimal action α.

According to Proposition 4, an optimal action α∗ is Pareto efficient in Mα∗

whenever there is no other optimal action that induces a strictly smaller set of

worst-off utilities. For instance, let us come back to the scenario in Figure 1. The

action α̂ is optimal because no action is strictly better for all the utilities. How-

ever, from Proposition 4, it is possible to conclude that action α̂ is not Pareto

efficient in Mα̂. Indeed, any action α in the interval (α̂, α∗] is also optimal and

Mα = {v1, v2} ⊂ {v1, v2, v3} = Mα̂. We refer to actions that are Pareto efficient

in the induced set of worst-off utilities as minimal and denote by Mmin the set of

worst-off utilities that they induce.

Despite any action in the interval (α̂, α∗] is minimal, the most natural action to

pick seems α∗, because utilities v1 and v2 are always indifferent, while utility v3

strictly prefers action α∗. In other words, a sensible selection criterion should also

impose an efficiency requirement for utilities that are outside Mmin. This consider-

ation leads us to our definition of efficiency.
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Definition 1. An action α∗ ∈ A is efficient if it is minimal and there is no other action

that Pareto dominates α∗ inW .

In the example of Figure 1, α∗ is the only efficient action. The next proposition

shows that there is always at least one efficient action.

Proposition 5. For any finite set of utilitiesW , there always exists an efficient action.

The existence of a minimal action follows from Proposition 4 and by the fact

that the set of utilities W is finite. If an optimal action is not minimal, then by

Proposition 4 there must exist another optimal action that induces a strictly smaller

set of worst-off utilities. Given thatW is finite, there must exist a minimal action

that induces the smallest set of worst-off utilities.

At this point, it is not possible to directly establish the existence of an efficient

action by solving a maximization problem over the set of minimal actions because

this set may not be compact as in the example of Figure 1. We circumvent this

issue as follows. First, we maximize again (?) over the set of optimal actions using

W \Mmin as set of utility functions. Second, we show that all the actions that solve

the maximization problem must be minimal. Third, within this compact subset of

minimal actions, we maximize the sum of the expected utilities over all utilities in

W \Mmin. Finally, we prove that any solution to this latter maximization problem

is efficient.

5 Deliberate randomization with two utilities

In this section, we study the role of deliberate randomization for a DM with convex

preferences and two utilities: W = {v1, v2}. From an operational point of view,

we show that this assumption is appealing because it simplifies the structure of

the set of optimal actions. At the same time, it still allows interesting deviations

from expected utility. For instance, in the C-EU model, Cerreia-Vioglio et al. (2015)
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show that two utilities are enough to rationalize the certainty effect in the Allais’

common ratio example.

Our first result is that a DM with convex preferences and two utilities never

finds it strictly beneficial to select more than two pure actions with positive prob-

ability.

Proposition 6. If |W| = 2, then

max
α∈A

u(α) = max
α∈{α′∈A : |Sα′ |≤2}

u(α).

There are two possibilities for any three pure actions in the support of an opti-

mal mixed action: either both utilities are indifferent among them, or they have op-

posite preferences. Otherwise, the mixed action would not be optimal. In the case

of indifference, it is easy to construct another optimal mixed action with smaller

support. In the proof, we show that this is also possible in the scenario of opposite

preferences.

To fix ideas, consider the example in Figure 1 neglecting the role of utility v3.

Utilities v1 and v2 have opposite preferences for the pure actions a, b and c. In

particular, a �v1 b �v1 c and c �v2 b �v2 a. We show that if there is a mixed

action inside the triangle that is optimal (for instance, action α̂), then there must

exist a unique mixed action α∗ with support {a, c} that is indifferent to the pure

action b for both utilities. Therefore, starting from α̂, one can reduce to zero the

probability weight of action b and increase the probability weights of actions a and

c by α∗(a)α̂(b) and α∗(c)α̂(b), respectively. The resulting new mixed action has

smaller support and is still optimal.

Proposition 6 provides a testable implication of our restriction on the set of

utility functions. Experiments that document deliberate randomization typically

focus on binary comparisons. For instance, in Agranov and Ortoleva (2020) sub-

jects can use an external randomization device to choose between two lotteries,

exactly as in our theoretical framework. To test our restriction on the number of
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utilities, one can enlarge the set of available lotteries and add a small cost for select-

ing more than two lotteries with a positive probability. Subjects consistent with the

assumption of two utilities should never be willing to pay any positive amount.

Maintaining the assumption of two utilities, we now characterize the mixed ac-

tions that maximize the DM’s preferences when there are no optimal pure actions.

In this case, we call randomization strictly beneficial.

Definition 2. Randomization is strictly beneficial if

∃α ∈ A : u(α) > max
a∈A

u(a).

In what follows, we first look at the case where the DM is indifferent among

all the pure actions. Then, we conclude by studying what happens when there are

only two pure actions.

5.1 Indifference

A non-expected utility DM with convex preferences always strictly benefits from

randomization when indifferent among all the pure actions.

Proposition 7. Assume that arg max
a∈A

u(a) = A. For any finite set of utilities W , ran-

domization is strictly beneficial if and only if there is no utility v ∈ W such that Pv = A.

Whenever a utility v always belongs to the set of worst-off utilities, then it is as

if the DM had expected utility preferences with utility v. This result holds regard-

less of the size ofW . The next proposition characterizes the set of optimal mixed

actions under indifference.

Proposition 8. Suppose thatW = {v1, v2}, arg max
a∈A

u(a) = A and there is no utility

v ∈ W such that Pv = A. A mixed action α ∈ A is optimal if and only if the following

conditions hold:

1. Mα = {v1, v2}.
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2. Sα ⊆ arg max
a∈Pv1\Pv2

U [E(a, v2), v2] ∪ arg max
a∈Pv2\Pv1

U [E(a, v1), v1] .

The evaluation of the optimal mixed action α must be the same for both utilities.

Otherwise, it is always possible to increase the minimum evaluation. Moreover,

the optimal mixed action must select with positive probability only pure actions for

which the two utilities disagree in the evaluations. That is, each pure action must

belong to Pv1 \ Pv2 or Pv2 \ Pv1 . In light of Proposition 6, it is enough to consider

only mixed actions that assign positive probability to two pure actions, one from

each set.

Intuitively, when the two utilities have two different evaluations for a pure ac-

tion, selecting the action with positive probability is strictly beneficial because it

helps the DM hedging against his conservative nature. However, when the two

evaluations coincide, no hedging is possible. Because of the indifference assump-

tion, utility v1 assigns the same value to all the actions in Pv1 \ Pv2 . Therefore,

among these actions, an optimal mixed action must select only those that maxi-

mize the evaluation for utility v2. An analogous argument applies to actions in

Pv2 \ Pv1 .

5.2 Two actions

In most experiments that document deliberate randomization, there are only two

feasible pure actions for each choice. The setting with binary actions is also in-

teresting in several applications, such as the static game we consider in the next

section. We begin characterizing strict benefits from randomization when there

are only two pure actions.

Proposition 9. Assume that A = {a, b} andW = {v1, v2}. Randomization is strictly

beneficial if and only if the following are true:

1. There is no utility v ∈ W such that Pv = A.

2. Either a �v1 b and b �v2 a, or b �v1 a and a �v2 b.
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The DM can find randomization strictly beneficial even if the two pure actions

do not ensure the same minimum evaluation. Therefore, the DM must be able

to commit credibly to stick with the indications of the randomization device. As

for the case of indifference, the DM’s preferences must not degenerate to expected

utility. Moreover, the two utilities must disagree in ranking the two pure actions.

Randomization is a valuable tool only when this internal disagreement is present

because it allows the DM to hedge against his pessimistic nature in evaluating pure

actions.

Besides shedding light on the drivers that make randomization desirable, Propo-

sition 9 also allows studying the DM’s risk attitude. In the C-EU model, Cerreia-

Vioglio et al. (2015) show that the DM is risk averse (respectively, risk seeking)

if and only if all the utilities in W are concave (respectively, convex). Thanks to

Proposition 9, it is possible to rule out both risk attitudes considering two pure

actions a and b, where a is a mean-preserving spread of b.15

Corollary 1. Assume that W = {v1, v2}, A = {a, b} and that action a is a mean-

preserving spread of action b. If incentives to randomize are strict, then a C-EU DM is

neither risk averse, nor risk seeking.

According to Proposition 9, if incentives to randomize are strict, the two utilities

must disagree in the ranking between actions a and b. But this necessarily implies

that one utility is convex while the other one is concave. Consequently, a C-EU

DM is neither risk averse nor risk seeking.

We conclude with the characterization of the optimal and unique mixed action.

Corollary 2. Assume that A = {a, b} and W = {v1, v2} and that randomization is

strictly beneficial. The action α ∈ A is uniquely optimal if and only if Mα =W .

When there are two utilities, two actions, and incentives to randomize are strict,

the unique optimal mixed action equalizes the payoff of the two utilities.
15We identify actions with the lotteries that they induce. Formally, given a belief µ, we say that

action a is a mean-preserving spread of action b if ρ̂(a, µ) is a mean-preserving spread of ρ̂(b, µ).

For a definition of mean-preserving spread, we refer to Rothschild and Stiglitz (1970).
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6 Games with Convex Preferences

A normal game form is a mathematical structure 〈N, (Si)i∈N, C, g〉 , where N is a

finite set of players, Si and is the set of available actions for each player i, C is the

set of consequences and g : ×i∈N Si → C is the outcome function that associates

consequences with strategy profiles. Therefore, each player i faces the decision

framework 〈Si, S−i, C, g〉.16

Given a conjecture µi ∈ 4(S−i), player i chooses αi ∈ 4(Si) to maximize

ui(α, µi) = min
v∈Wi

U
[
Eµi(α, v), v

]
,

where we make the dependence from the conjecture explicit. Similarly, we write

Mαi,µi , Pv,µi , �v,µi and ∼v,µi instead of Mαi , Pv, �v and ∼v. A normal-form game

with convex preferences G adds to the normal game form the profile (Wi)i∈N of

sets of utility functions on C. Every normal-form game with convex preferences

always has a Nash equilibrium because all the standard assumptions for existence

hold.17 In what follows, we characterize the set of all possible Nash equilibria

when there are two players, each having two pure actions and two utility func-

tions.

Consider a normal-form game with convex preferences G with N = {A, B},

SA = {a1, a2}, SB = {b1, b2} and |WA| = |WB| = 2. For convenience, we identify

mixed actions for players A and B with the probabilities α ∈ (0, 1) and β ∈ (0, 1)

that they assign to actions a1 and b1. We also denote by v and w generic utilities

for players A and B. Given a utility v ∈ WA for player A, we represent by βv the

mixed action of player B such that a1 ∼v,βv a2. Therefore, player A is indifferent

between pure actions a1 and a2 when using utility v and thinking that player B

chooses the mixed action βv. Similarly, given a utility w ∈ WB for player B, we

denote by αw the mixed action of player A such that b1 ∼w,αw b2. We assume
16We denote by −i = N \ {i} the set of players different from i.
17The set ×i∈N4(Si) is compact and convex. Moreover, for each player i ∈ N, the function ui is

continuous and quasi-concave since the preferences that it represents satisfy convexity.
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that for all v ∈ WA and w ∈ WB, αw ∈ [0, 1] and βv ∈ [0, 1] are well-defined.

This amounts to imposing that under no single utility, one player has a dominant

action.

6.1 Strict Mixed Nash Equilibria

The profile of strategies (αw, βv) is the mixed Nash equilibrium that would result

in a game in which players A and B maximize subjective expected utility with

utilities v and w. Within the subjective expected utility framework, every player is

indifferent between the mixed action played in equilibrium and all the pure actions

in the support. When instead players have convex preferences, our analysis thus

far shows that given a fixed conjecture about the other player’s action, the incen-

tives to play a mixed action may be strict. We now study under what conditions

incentives to randomize extend to mixed Nash equilibria of G.

Let (α, β) ∈ (0, 1)2 be a mixed Nash equilibrium of G. First, notice that

α ∈ Ā := [ min
w∈WB

αw, max
w∈WB

αw] and β ∈ B̄ := [ min
v∈WA

βv, max
v∈WA

βv].

These conditions follow directly from the definition of Nash equilibrium. For in-

stance, if β > max B̄, then either a1 �v,β a2 or a2 �v,β a1 for all v ∈ WA. In both

cases, the mixed action α ∈ (0, 1) for player A can not be a best reply to action β

for player B. The next corollary clarifies that, in equilibrium, incentives to random-

ize are strict for both players A and B depending on whether actions β and α are

boundary or interior points of B̄ and Ā, respectively.18

Corollary 3. Let (α, β) ∈ (0, 1)2 be a mixed Nash equilibrium of G. The following

statements are true:

1. α ∈ Āo if and only if uB(β, α) > max{uB(b1, α), uB(b2, α)}.

2. β ∈ B̄oif and only if uA(α, β) > max{uA(a1, β), uA(a2, β)}.
18Given a generic set X, we denote by Xo the set of interior points of X.
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Suppose first that α 6∈ Ao. Then player B does not strictly benefit from random-

ization. Indeed, for any α 6∈ Ao, at least one of the two utilities inWB is indifferent

between actions b1 and b2. By Proposition 9, incentives to randomize can not be

strict. Suppose instead that α ∈ Ao. In this case, player B strictly benefits from

randomization. Given that α ∈ Ao, it must be that one utility inWB strictly prefers

action b1 to action b2, and the other has opposite preferences. By Proposition 9, it

is enough to show that there is no utility in WB that belongs to the sets of worst-

off utilities induced by both pure actions. This latter condition must hold because

otherwise, the mixed action β would not be a best reply to the correct conjecture α.

An analogous reasoning can be used to prove the second statement of Corollary 3.

In light of Corollary 3, we classify mixed Nash equilibria as follows.

Definition 3. Let (α, β) ∈ (0, 1)2 be a mixed Nash equilibrium of G. We call (α, β)

• weak if α 6∈ Āo and β 6∈ B̄o.

• partially strict if either α 6∈ Āo and β ∈ Āo or α ∈ Āo and β 6∈ Āo.

• strict if α ∈ Āo and β ∈ Āo.

When the sets Āo and B̄o are empty, Corollary 3 implies that there can not be

strict mixed Nash equilibria. One notable example of a game in which this happens

is matching pennies. Indeed, as long as the utilities of the two players are strictly

increasing, we have Ā = B̄ = {0.5}. For the remaining part of this section, we

assume that Āo and B̄o are non-empty so that any mixed Nash equilibrium is a

priori possible.

The computation of weak equilibria follows the same logic used to compute

equilibria under expected utility. In equilibrium, each player must be indifferent

between the two pure actions. We now turn to the analysis of partially strict and

strict equilibria, in which at least one player strictly benefits from randomization.

In particular, let us focus on player A and suppose that there exists a subset of

conjectures X ⊆ B̄o under which player A strictly benefits from randomization.
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B

b1 b2

A
a1 3, 1 0, 0

a2 0, 0 1, 3

Table 1: Coordination game: outcome function.

The next corollary characterizes the best reply of player A for all conjectures in X,

assuming the maxmin expected utility model.

Corollary 4. Let WA = {vA, wA}. For all conjectures β ∈ X, the unique optimal mixed

action α(β) in the maxmin expected utility model satisfies

α(β) =
Eβ[a2, wA]−Eβ[a2, vA]

Eβ[a2, wA]−Eβ[a2, vA] + Eβ[a1, vA]−Eβ[a1, wA]
.

Corollary 4 provides a simple closed-form expression that characterizes the

best reply of player A for the subset of conjectures under which randomization

is strictly beneficial. An interesting insight that emerges from Corollary 4 is that

the optimal probability with which player A chooses action a1 is increasing in

|Eβ[a2, wA] − Eβ[a2, vA]| and decreasing in |Eβ[a1, wA] − Eβ[a1, vA]|. That is, in

the maxmin expected utility model, players dislike actions for which there is high

variability in their evaluations.

To illustrate all the possible types of mixed Nash equilibria, we consider the

coordination game with the outcome function represented in Table 1. We assume

that players A and B behave according to maxmin expected utility criterion. Each

player has two utility functions, one CARA and one CRRA.19 Figure 2 represents

the best replies for the two players.20 Every intersection point of the two best

replies represents a Nash equilibrium. In this example, there are 11 Nash equi-

libria: two pure, four weak, four partially strict, and one strict. The two pure

19CARA: vA(x) = wA(x) = 1− 1
α e−αx, with x ≥ 0 and α > 0. CRRA: vB(x) = wB(x) = xγ, with

x ≥ 0 and γ ∈ (0, 1).
20Parameters: α = 1.52 and γ = 0.42.
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Figure 2: Nash equilibria of the coordination game.

Nash equilibria are in light blue, the four weak Nash equilibria are in light green,

the four partially strict mixed Nash equilibria are in magenta, and the strict Nash

equilibrium is in black.

In this simple and analytically tractable scenario of two utility functions for

each player, we obtain starkly different predictions from the expected utility case.

From a numerical point of view, convexity may lead to a multiplicity of mixed

equilibria. Most importantly, partially strict and strict mixed Nash equilibria do

not have an analog under expected utility. We now extend the notion of efficiency

developed in Section 4 to profiles of actions and show that strict mixed Nash equi-

libria are the only type of equilibria that satisfy this notion.

Definition 4. A mixed Nash equilibrium (α, β) of G is efficient if in equilibrium α and β

are efficient.

The next corollary clarifies that only strict mixed Nash equilibria satisfy the
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efficiency requirement in Definition 4.

Corollary 5. Let (α, β) be a mixed Nash equilibrium of G and suppose that Āo and B̄o are

non-empty. Then (α, β) is efficient if and only if (α, β) is strict.

The notion of efficiency introduced in Definition 4 can serve as a selection cri-

terion for settings with multiple mixed Nash equilibria. In the example described

in Figure 2, there are nine mixed Nash equilibria, but only one is strict and, by

Corollary 5, efficient.

Overall, the presence of strict mixed Nash equilibria is the main element of

novelty that emerges from our equilibrium analysis in games with convex prefer-

ences. We show that, as documented by contemporaneous experimental works,

incentives to randomize extend to strategic interaction settings but only under cer-

tain conditions. For instance, strict mixed Nash equilibria may arise in a coordina-

tion game as the one described in Figure 2 but do not exist in matching pennies.

Besides being empirically relevant given the evidence of randomization in games,

Corollary 5 shows that when they exist, strict mixed Nash equilibria are also nor-

matively appealing because they are the only efficient equilibria.

7 Conclusions

Despite the growing theoretical and experimental literature on random choices

under risk, the applicability of models that rationalize deliberate randomization is

still limited. This paper studies the set optimal actions for a DM whose preferences

satisfy convexity, the axiom that makes randomization weakly beneficial. Under

convexity, the DM’s preferences admit a conservative multi-utility representation:

actions are ranked only through the lowest utility valuation they generate.

One drawback of this representation in applications is that it is not differen-

tiable, so standard optimization techniques are not viable. Our main result (Propo-

sition 1) shows that an action is optimal whenever the intersection of the strict up-
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per contour sets of the worst-off utilities is empty. When more than one action is

optimal, we propose Pareto efficiency in the set of worst-off utilities and in the set

of all utilities as a selection rule. Proposition 4 clarifies that the first requirement

amounts to isolating optimal actions that induce the smallest set of worst-off utili-

ties. The second requirement allows instead to account for utilities outside this set.

Proposition 5 guarantees that there is always an optimal action that satisfies both

requirements and thus is efficient.

Next, we narrow our attention to random choices for a DM with two utilities.

Proposition 6 provides a testable implication of this assumption, proving that a

DM with two utilities never finds it strictly beneficial to select more than two ac-

tions with positive probability. We then study under what conditions randomiza-

tion is strictly beneficial and the properties that an optimal random choice must

satisfy in two cases: when the DM is indifferent among the pure actions (Proposi-

tion 7 and Proposition 8) and when there are only two pure actions (Proposition 9

and Corollary 2).

The binary actions setting recreates the typical environment that subjects face in

experiments on randomization under risk. In general, preferences for randomiza-

tion can coexist with various attitudes towards risk. Our analysis of randomization

incentives suggests a new approach to rule out risk aversion and risk seeking in

the C-EU model. According to Corollary 1, a C-EU DM is neither risk averse nor

risk seeking if incentives to randomize are strict between two actions, one being

a mean preserving spread of the other. Moreover, Corollary 2 shows that when

incentives to randomize are strict, the optimal mixed action is unique.

A special case of the decision framework that we study is game theory. We

focus on a generic game with two players, each with two actions and two utility

functions. The new prediction that arises from our analysis is that strict incentives

to randomize extend to strategic interaction settings. Corollary 3 provides neces-

sary conditions for the existence of a new class of mixed Nash equilibria that we
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call strict because players strictly prefer the equilibrium mixed actions to the pure

actions. Corollary 4 derives a closed-form expression of the best response function

for the case in which randomization is strictly beneficial, and players have maxmin

preferences. We then exploit this result to compute the mixed Nash equilibria of

a simple coordination game. In this example, we find nine mixed Nash equilib-

ria, one of which is strict. Although convexity may lead to a multiplicity of mixed

equilibria, we show in Corollary 5 that when they exist, only strict equilibria are

such that all the mixed actions are efficient.
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Appendix: proofs

This appendix contains the proofs of the results stated in the body of the text.

Proof of Proposition 1

Step 1. If
⋂

v∈Mα∗
SUCSv(α∗) = ∅, then α∗ is optimal.

Proof of Step 1. Consider an action α∗ such that
⋂

v∈Mα∗
SUCSv(α∗) = ∅. This

implies that for all α ∈ A, there exists v ∈ Mα∗ such that

u(α∗) = U [E(α∗, v), v] ≥ U [E(α, v), v] ≥ u(α).

Therefore, α∗ is optimal.

Step 2. If α∗ is optimal, then
⋂

v∈Mα∗
SUCSv(α∗) = ∅.

Proof of Step 2. We show that if there exists an action α ∈ A such that α �v α∗ for

all v ∈ Mα∗ , then α∗ is not optimal. Define a new mixed action α̂λ parametrized by

λ ∈ (0, 1) such that for all a ∈ A

α̂λ(a) = λα(a) + (1− λ)α∗(a).

We now show that there exists a value λ̄ ∈ (0, 1] such that for all λ ∈ (0, λ̄),

u(α̂λ) > u(α∗). To this end, consider the function Ψ : [0, 1] ×W → R such that

Ψ(λ, v) = U [E(α̂λ, v), v]− u(α∗), for all λ ∈ [0, 1] and v ∈ W . As an intermediate

step, we prove that for each v ∈ W , there exists a value λ̄v ∈ (0, 1] such that for all

λ ∈ (0, λ̄v), Ψ(λ, v) > 0. Take a utility v ∈ W . There are two possibilities:

1. If α %v α∗, then for all λ ∈ (0, 1]

Ψ(λ, v) = U [E(α̂λ, v), v]− u(α∗)

= U [λE(α, v) + (1− λ)E(α∗, v), v]− u(α∗)

≥ U [λE(α∗, v) + (1− λ)E(α∗, v), v]− u(α∗)

= U [E(α∗, v), v]− u(α∗) ≥ 0,
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where at least one of the two weak inequalities holds strict. If α �v α∗, the

first inequality is strict because the function U [·, v] is strictly increasing in

the first argument. If instead α ∼v α∗, the last inequality is strict because

v 6∈ Mα∗ . For all such v, we let λ̄v = 1.

2. If α∗ �v α, then Ψ(·, v) is strictly decreasing in the first argument because

U [·, v] is strictly increasing in the first argument. Ψ(·, v) is continuous in the

first argument because U [·, v] is continuous in the first argument. If Ψ(1, v) ≥

0, the result follows immediately by taking λ̄v = 1. Suppose that Ψ(1, v) < 0.

Notice that Ψ(0, v) > 0 because α∗ �v α implies that v 6∈ Mα∗ . Therefore, by

the Intermediate Value Theorem, there exists λ̄v ∈ (0, 1) such that Ψ(λ̄v, v) =

0. By Ψ(·, v) strictly decreasing, Ψ(λ, v) > 0 for all λ ∈ (0, λ̄v).

To conclude the proof, we let λ̄ = min
v∈W

λ̄v. Given thatW is finite, λ̄ is well-defined.

By construction, for all λ ∈ (0, λ̄) and for all v ∈ W ,

Ψ(λ, v) = U [E(α̂λ, v), v]− u(α∗) > 0.

This implies that u(α̂λ) > u(α∗). Consequently, we conclude that α∗ is not optimal.

Proof of Proposition 2

Step 1. If
⋂

v∈Mα∗
SUCSv(α) = ∅ for all α ∈ A with Sα ⊆ Sα∗ , then α∗ is optimal.

Proof of Step 1. Consider an action α∗ ∈ A. If for all α ∈ A with Sα ⊆ Sα∗ ,⋂
v∈Mα∗

SUCSv(α) = ∅, then trivially α∗ is optimal by Proposition 1.

Step 2. If α∗ is optimal, then
⋂

v∈Mα∗
SUCSv(α) = ∅ for all α ∈ A with Sα ⊆ Sα∗ .

Proof of Step 2. Take an action α∗ ∈ A. We show that if there exist an action α̃ ∈ A,

with Sα̃ ⊆ Sα∗ and another action α ∈ A such that α �v α̃ for all v ∈ Mα∗ , then α∗

is not optimal. Define a new mixed action α̂λ parametrized by λ ∈ (0, λ̂) such that

for all a ∈ A

α̂λ(a) = α∗(a) + λ [α(a)− α̃(a)] ,
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where the upper bound λ̂ is defined as follows:

λ̂ = max {λ ∈ (0, 1] : ∀a ∈ A, α̂λ(a) ≥ 0} .

Notice that λ̂ is well-defined because Sα̃ ⊆ Sα∗ . We now show that there exists a

value λ̄ ∈ (0, λ̂] such that for all λ ∈ (0, λ̄), u(α̂λ) > u(α∗). To this end, consider

the function Ψ : [0, λ̂]×W → R such that Ψ(λ, v) = U [E(α̂λ, v), v]− u(α∗), for all

λ ∈ [0, λ̂] and v ∈ W . As an intermediate step, we prove that for each v ∈ W ,

there exists a value λ̄v ∈ (0, λ̂] such that for all λ ∈ (0, λ̄v), Ψ(λ, v) > 0. Take a

utility v ∈ W . There are two possibilities:

1. If α %v α̃, then for all λ ∈ (0, λ̂]

Ψ(λ, v) = U [E(α̂λ, v), v]− u(α∗)

= U [E(α∗, v) + λ [E(α, v)−E(α̃, v)] , v]− u(α∗)

≥ U [E(α∗, v), v]− u(α∗) ≥ 0,

where at least one of the two weak inequalities holds strict. If α �v α̃, the first

inequality is strict because the function U [·, v] is strictly increasing in the first

argument. If instead α ∼v α̃, the last inequality is strict because v 6∈ Mα∗ . For

all such v, we let λ̄v = λ̂.

2. If α̃ �v α, then Ψ(·, v) is strictly decreasing in the first argument because

U [·, v] is strictly increasing in the first argument. Ψ(·, v) is continuous in

the first argument because U [·, v] is continuous in the first argument. If

Ψ(λ̂, v) ≥ 0, the result follows immediately by taking λ̄v = λ̂. Suppose

that Ψ(λ̂, v) < 0. Notice that Ψ(0, v) > 0 because α̃ �v α implies that v 6∈

Mα∗ . Therefore, by the Intermediate Value Theorem, there exists λ̄v ∈ (0, λ̂)

such that Ψ(λ̄v, v) = 0. By Ψ(·, v) strictly decreasing, Ψ(λ, v) > 0 for all

λ ∈ (0, λ̄v).

To conclude the proof, we let λ̄ = min
v∈W

λ̄v. Given thatW is finite, λ̄ is well-defined.
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By construction, for all λ ∈ (0, λ̄) and for all v ∈ W ,

Ψ(λ, v) = U [E(α̂λ, v), v]− u(α∗) > 0.

This implies that u(α̂λ) > u(α∗) and α∗ is not optimal.

Proof of Proposition 3

Suppose that α∗ ∈ A is optimal.

Step 1. If there is no α ∈ A with α∗ 6= α, such that α∗ ∼v α for all v ∈ Mα∗ , then α∗ is

unique.

Proof of Step 1. We show that if α∗ is not unique, then there is an action α ∈ A,

with α∗ 6= α, such that α∗ ∼v α for all v ∈ Mα∗ . Take an optimal action α with

α 6= α∗. First, notice that for all v ∈ Mα∗ , it holds that α %v α∗. Consider the set

{v ∈ Mα∗ : α ∼v α∗}. By Proposition 1, this set is non-empty. If it coincides with

Mα∗ , then the proof is completed: α ∼v α∗ for all v ∈ Mα∗ . Otherwise, define a new

mixed action α̂λ parametrized by λ ∈ (0, 1) such that for all a ∈ A

α̂λ(a) = λα(a) + (1− λ)α∗(a).

We now show that there exists a value λ̄ ∈ (0, 1] such that for all λ ∈ (0, λ̄),

α̂λ is optimal and for all v ∈ Mα̂λ
, α̂λ ∼v α∗. To this end, consider the function

Ψ : [0, 1] ×W → R such that Ψ(λ, v) = U [E(α̂λ, v), v] − u(α∗), for all λ ∈ [0, 1]

and v ∈ W . As an intermediate step, we prove that for each v ∈ W , there exists a

value λ̄v ∈ (0, 1] such that for all λ ∈ (0, λ̄v), Ψ(λ, v) ≥ 0, with equality holding

only if v ∈ {v ∈ Mα∗ : α ∼v α∗}. Take a utility v ∈ W . There are two possibilities:

1. If α %v α∗, then for all λ ∈ (0, 1]

Ψ(λ, v) = U [E(α̂λ, v), v]− u(α∗)

= U [λE(α, v) + (1− λ)E(α∗, v), v]− u(α∗)

≥ U [λE(α∗, v) + (1− λ)E(α∗, v), v]− u(α∗)

= U [E(α∗, v), v]− u(α∗) ≥ 0,
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where both weak inequalities hold as equalities only if v ∈ {v ∈ Mα∗ : α ∼v

α∗}. For all v with α %v α∗, we let λ̄v = 1.

2. If α∗ �v α, then Ψ(·, v) is strictly decreasing in the first argument because

U [·, v] is strictly increasing in the first argument. Ψ(·, v) is continuous in the

first argument because U [·, v] is continuous in the first argument. If Ψ(1, v) ≥

0, the result follows immediately by taking λ̄v = 1. Suppose that Ψ(1, v) < 0.

Notice that Ψ(0, v) > 0 because α∗ �v α implies that v 6∈ Mα∗ . Therefore, by

the Intermediate Value Theorem, there exists λ̄v ∈ (0, 1) such that Ψ(λ̄v, v) =

0. By Ψ(·, v) strictly decreasing, Ψ(λ, v) > 0 for all λ ∈ (0, λ̄v).

To conclude the proof, we let λ̄ = min
v∈W

λ̄v. Given thatW is finite, λ̄ is well-defined.

By construction, for all λ ∈ (0, λ̄) and for all v ∈ W ,

Ψ(λ, v) = U [E(α̂λ, v), v]− u(α∗) ≥ 0,

where the inequality holds as an equality for v ∈ {v ∈ Mα∗ : α ∼v α∗}. Therefore,

u(α∗) = u(α̂λ) and given that action α∗ is optimal, action α̂λ must be optimal

as well. Moreover, by construction, Mα̂λ
= {v ∈ Mα∗ : α ∼v α∗} ⊂ Mα∗ and

consequently α̂λ ∼v α∗ for all v ∈ Mα̂λ
.

Step 2. If α∗ is unique, then there is no α ∈ A with α∗ 6= α, such that α∗ ∼v α for all

v ∈ Mα∗ .

Proof of Step 2. Suppose that there exist two actions α∗ and α, with α∗ 6= α, such

that α∗ is optimal and α∗ ∼v α for all v ∈ Mα∗ . We show that α∗ is not unique. To

this end, define a new mixed action α̂λ parametrized by λ ∈ (0, 1) such that for all

a ∈ A

α̂λ(a) = λα(a) + (1− λ)α∗(a).

Replicating the same argument used for Step 1 of Proposition 3, we can show that

there exists a value λ̄ ∈ (0, 1] such that for all λ ∈ (0, λ̄), α̂λ is optimal and Mα̂λ
=

Mα∗ . This proves that the optimal action α∗ is not unique.
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Proof of Proposition 4

Step 1. For any optimal action α∗, if Mα∗ ⊆ Mα for any other optimal action α, then α∗

is efficient.

Proof of Step 1. Take an action α∗ that is optimal. We show that if α∗ is not efficient,

then there exists another optimal action α̂ such that Mα̂ ⊂ Mα∗ . Given that α∗ is

not efficient, there exists α ∈ A such that α %v α∗ for all v ∈ Mα∗ and α �v α∗ for

some v ∈ Mα∗ . Also notice that by Proposition 1 there exists at least one v ∈ Mα∗

with α ∼v α∗ because α∗ is optimal. Define a new mixed action α̂λ parametrized

by λ ∈ (0, 1) such that for all a ∈ A

α̂λ(a) = λα(a) + (1− λ)α∗(a).

Replicating the same argument used for Step 1 of Proposition 3, we can show that

there exists a value λ̄ ∈ (0, 1] such that for all λ ∈ (0, λ̄), α̂λ is optimal and Mα̂λ
=

{v ∈ Mα∗ : α ∼v α∗} ⊂ Mα∗ .

Step 2: If α∗ is efficient, then Mα∗ ⊆ Mα for any other optimal action α.

Proof of Step 2. Take an optimal action α∗. We show that if there exists another op-

timal action α such that it is not true that Mα∗ ⊆ Mα, then action α∗ is not efficient.

First, notice that for all v ∈ Mα∗ ,

U [E(α, v), v] ≥ u(α) = u(α∗) = U [E(α∗, v), v] .

In particular, there is a utility v̄ ∈ Mα∗ such that v̄ 6∈ Mα. For this utility v̄, the

weak inequality holds strict. Therefore, α∗ is not efficient.

Proof of Proposition 5

Step 1. There exists an optimal action α∗ that is Pareto efficient in Mα∗ .

Proof of Step 1. By contradiction, suppose that there is no optimal action α∗ that

is Pareto efficient in Mα∗ . Take an optimal action α. By Proposition 4, there exists

another optimal action α̂ such that Mα̂ ⊂ Mα. Given thatW is finite, after a finite
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number of iterations of this argument, we obtain an optimal action α∗ such that

Mα∗ = {v}, for some utility v ∈ W . By assumption, α∗ is not Pareto efficient in

Mα∗ . This implies that there exists another action α̃ �v α∗. By Proposition 1, α∗

is not optimal, a contradiction. Consequently, the set of minimal actions is non-

empty. Before proceeding with Step 2 of the proof, we introduce some additional

notation.

Let us denote by O the set of optimal actions, by E ⊆ O the set of minimal ac-

tions and by Mmin the set of worst-off utilities induced by minimal actions. By Step

1, the sets E and Mmin are well-defined. Let us consider the following optimization

problem:

max
α∈O

min
v∈W\Mmin

U [E(α, v), v] . (1)

The set of optimal actions O is non-empty and compact by the maximum theorem.

Moreover, the objective function is continuous and quasi-concave. Consequently,

the set of solutions for problem (1) that we denote by E1 is non-empty and again

compact by the maximum theorem.

Step 2: E1 ⊆ E.

Proof of Step 2. Take any optimal action α that is not minimal. We show that

α 6∈ E1. Take any other action α̃ ∈ E. We have

min
v∈W\Mmin

U [E(α, v), v] = min
v∈W

U [E(α, v), v]

= min
v∈W

U [E(α̃, v), v]

< min
v∈W\Mmin

U [E(α̃, v), v] ,

where the first equality holds because α is not minimal and consequently Mmin ⊂

Mα, the second equality holds because both actions α and α̃ are optimal, the third

strict inequality holds because α̃ is efficient and consequently Mα̃ = Mmin.

Consider now the following maximization problem:

max
α∈E1

∑
v∈W\Mmin

E(α, v). (2)
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We denote by E2 the set of actions that solve (2). By the maximum theorem, E2 is

non-empty and compact.

Step 3: Any α ∈ E2 is efficient.

Proof of Step 3. Take any actions α ∈ E2 and α̃ ∈ A. If α̃ 6∈ O, then given that α

is optimal, there must exist a utility v ∈ W such that α �v α̃. If instead α̃ ∈ O \ E,

then Mα̃ \ Mmin 6= ∅. For any utility v ∈ Mα̃ \ Mmin, we have α �v α̃. Let us

assume now that α̃ ∈ E. Notice that E2 ⊆ E1 ⊆ E. We consider two different cases:

• Case 1: α̃ ∈ E1. Given that α̃ ∈ E1 and α ∈ E2, we have

∑
v∈W\Mmin

E(α, v) ≥ ∑
v∈W\Mmin

E(α̃, v).

Consequently, if there exists a utility v ∈ W \ Mmin such that α̃ �v α, then

there must also exist a utility v̄ ∈ W \Mmin such that α �v̄ α̃. Therefore, no

action α̃ ∈ E1 Pareto dominates α ∈ E2 inW .

• Case 2: α̃ ∈ E \ E1. In this case, for at least one utility v̄ ∈ W \Mmin, we have

U [E(α, v̄), v̄] ≥ min
v∈W\Mmin

U [E(α, v), v]

> min
v∈W\Mmin

U [E(α̃, v), v]

= U [E(α̃, v̄), v̄] ,

where the first weak inequality hols for any utility v̄ ∈ W \Mmin, the second

strict inequality holds because α ∈ E1 and α̃ 6∈ E1, the third equality holds for

at least one utility v̄ ∈ W \Mmin becauseW is finite. For such utility v̄, we

have α �v α̃. Therefore, no action α̃ ∈ E \ E1 Pareto dominates α ∈ E2 inW .

Proof of Proposition 6

LetW = {v1, v2} and suppose that the action α ∈ A with |Sα| > 2 is optimal. We

show that there exists another optimal action α̂ ∈ A with |Sα̂| ≤ 2. If u(α) = u(a)

for some a ∈ A, the statement follows. Suppose that u(α) > u(a) for all a ∈ A.
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Step 1. If α is optimal, then Mα = {v1, v2}.

Proof of Step 1. Suppose that |Mα| = 1. Without loss of generality, let Mα = {v1}.

Given that α is optimal, by Proposition 1 α %v1 a for all a ∈ Sα. Therefore, α ∼v1 a

for all a ∈ Sα. Given that u(α) > u(a) for all a ∈ A, it must be that Ma = {v2} for

all a ∈ Sα. Therefore, we have

U [E(α, v1), v1] = U
[

max
ã∈Sα

E(ã, v1), v1

]
> U

[
max
ã∈Sα

E(ã, v2), v2

]
≥ U [E(α, v2), v2] ,

where the equality holds because α ∼v1 a for all a ∈ Sα, the strict inequality be-

cause Ma = {v2} for all a ∈ Sα and the weak inequality because U [·, v2] is a strictly

increasing function. Consequently, U [E(α, v1), v1] > U [E(α, v2), v2], which con-

tradicts Mα = {v1}.

Step 2. If α is optimal, for all a, a′ ∈ Sα, we have a ∼v1 a′ if and only if a ∼v2 a′.

Proof of Step 2. Suppose that there exist actions a, a′ ∈ Sα such that a ∼v1 a′

and a �v2 a′. We show that α is not optimal. Consider a new action α̃ such that

α̃(a) = α(a)+ α(a′), α̃(a′) = 0 and α̃(a′′) = α(a′′) for all a′′ ∈ Sα \ {a, a′}. Therefore,

we have α̃ ∼v1 α and α̃ �v2 α. Given that by Step 1 Mα = {v1, v2}, then Mα̃ = {v1}

and u(α) = u(α̃). However, Step 1 also implies that α̃ is not optimal, which in turn

implies that α is not optimal.

Whenever there are two actions a, a′ ∈ Sα, such that a ∼v1 a′ and a ∼v2 a′,

it is possible to construct another optimal mixed action α′ with Sα′ ⊂ Sα. It is

enough take α′ such that α′(a) = α(a) + α(a′), α′(a′) = 0 and α′(a′′) = α(a′′) for

all a′′ ∈ Sα \ {a, a′}. From now on, assume that there are no actions a, a′ ∈ Sα, such

that a ∼v1 a′ and a ∼v2 a′, but still |Sα| > 2.

Step 3. If α is optimal, for all a, a′ ∈ Sα, we have a �v1 a′ if and only if a′ �v2 a.

Proof of Step 3. Suppose that there exist actions a, a′ ∈ Sα such that a �v1 a′ and

a %v2 a′. We show that α is not optimal. By Step 2 we have a �v2 a′, otherwise

we could conclude a ∼v1 a′. Therefore, by Proposition 2 we conclude that α is not

optimal.
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Step 4. If α is optimal and |Sα| = n > 2, there exists another optimal action α̃ with

|Sα̃| = n− 1 .

Proof of Step 4. Consider three actions a, a′, a′′ ∈ Sα. Without loss of generality,

assume a �v1 a′ �v1 a′′. By Step 3, a′′ �v2 a′ �v2 a. Define a new mixed action αλ

parametrized by λ ∈ [0, 1] such that αλ(a) = λ and αλ(a′′) = 1− λ. Consider the

sets

S1 := {λ ∈ [0, 1] : αλ %v1 a′} and S2 := {λ ∈ [0, 1] : αλ %v2 a′}.

These sets are non-empty because 1 ∈ S1 and 0 ∈ S2. Moreover, they are closed

because %v1 and %v2 are expected utility preferences and satisfy continuity. There-

fore, let k1, k2 ∈ (0, 1) such that S1 = [k1, 1] and S2 = [0, k2]. We have that αk1 ∼v1 a′

and αk2 ∼v2 a′. In what follows, we show that if α is optimal, then k1 = k2. If

k1 < k2, for λ ∈ (k1, k2) we have αλ �v1 a′ and αλ �v2 a′. By Proposition 2, α

is not optimal. If k1 > k2, for λ ∈ (k2, k1) we have a′ �v1 αλ and a′ �v2 αλ. By

Proposition 2, α is not optimal. Therefore, it must be that k1 = k2 = k. Define a

new mixed action α̂ such that

• α̂(a′) = 0.

• α̂(a) = α(a) + α(a′)k.

• α̂(a′′) = α(a′′) + α(a′)(1− k).

• α̂(â) = α(â) for all â ∈ A \ {a, a′, a′′}.

Notice that α̂ is optimal because α̂ ∼v1 α and α̂ ∼v2 α. Moreover, |Sα̂| = |Sα| − 1.

Therefore, if |Sα| = n > 2, iterating n− 2 times Step 4 we can obtain an optimal

action α̃ with |Sα̃| = 2.

Proof of Proposition 7

Take any finite set of utilitiesW and assume that arg max
a∈A

u(a) = A.
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Step 1. If randomization is strictly beneficial, then there is no utility v ∈ W such that

Pv = A.

Proof of Step 1. Suppose that randomization is strictly beneficial. Then, there

exists α ∈ A such that u(α) > u(a) for all a ∈ A. By contradiction, suppose that

there exists v ∈ W such that Pv = A. Then, for all a ∈ A, we have

U [E(a, v), v] = U [E(α, v), v] ≥ u(α) > u(a) = U [E(a, v), v] ,

where the first equality holds because Pv = A and arg max
a∈A

u(a) = A, the second

weak inequality by definition of u(·), the third strict inequality by assumption and

the last equality because Pv = A. Therefore, we obtained a contradiction.

Step 2. If there is no utility v ∈ W such that Pv = A, then randomization is strictly

beneficial.

Proof of Step 2. Take an action α ∈ A with Sα = A. Notice that for all ã ∈ A, and

for all v ∈ W ,

U [E(α, v), v] ≥ U
[

min
a∈A

E(a, v), v
]
≥ u(ã),

where the first weak inequality holds because the function U [·, v] is strictly increas-

ing in the first argument and the second weak inequality because arg max
a∈A

u(a) = A

and by definition of u(·). Moreover, if the first inequality holds as equality, then

the second inequality is strict. Otherwise, we would have Pv = A. Therefore,

incentives to randomize are strict.

Proof of Proposition 8

Suppose thatW = {v1, v2}, arg max
a∈A

u(a) = A and there is no utility v ∈ W such

that Pv = A.

Step 1. If action α ∈ A is optimal, then Mα = {v1, v2}.

Proof of Step 1. See Step 1 in the proof of Proposition 6.
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Step 2. If action α ∈ A is optimal, then

Sα ⊆ arg max
a∈Pv1\Pv2

U [E(a, v2), v2] ∪ arg max
a∈Pv2\Pv1

U [E(a, v1), v1] .

Proof of Step 2. Suppose that there is an action a ∈ Sα such that

a 6∈ arg max
a∈Pv1\Pv2

U [E(a, v2), v2] ∪ arg max
a∈Pv2\Pv1

U [E(a, v1), v1] .

We show that action α is not optimal. Assume that Mα = {v1, v2}, otherwise by

Step 1 the statement follows. There are three cases:

1. a ∈ Pv1 ∪ Pv2 . Consider a new mixed action α̂ such that α̂(a) = 0 and for all

a′ 6= a, α̂(a′) = α(a′) + α(a)(|A| − 1)−1. Notice that for all actions a′ ∈ A,

a′ %v1 a and a′ %v2 a because arg max
a∈A

u(a) = A. Moreover, given that that

there is no utility v ∈ W such that Pv = A, there must be two actions a1 and

a2 such that a1 �v1 a and a2 �v2 a. Therefore, it follows that α̂ �v1 α and

α̂ �v2 α, concluding that α is not optimal.

2. a ∈ Pv1 \ Pv2 . Take an action a′ ∈ Pv1 \ Pv2 such that a′ �v2 a. By assumption,

such action exists. Consider a new mixed action α̂ such that α̂(a) = 0, α̂(a′) =

α(a) + α(a′) and for all a′′ ∈ A \ {a, a′}, α̂(a′) = α(a). Given that a′ �v2 a and

a′ ∼v1 a, it must be that u(α) = u(α̂) and Mα̂ = {v1}. By Step 1, there exists

another action α̃ such that u(α̃) > u(α̂) = u(α). Therefore, action α is not

optimal.

3. a ∈ Pv2 \ Pv1 . Take an action a′ ∈ Pv2 \ Pv1 such that a′ �v1 a. By assumption,

such action exists. Consider a new mixed action α̂ such that α̂(a) = 0, α̂(a′) =

α(a) + α(a′) and for all a′′ ∈ A \ {a, a′}, α̂(a′) = α(a). Given that a′ �v1 a and

a′ ∼v2 a, it must be that u(α) = u(α̂) and Mα̂ = {v2}. By Step 1, there exists

another action α̃ such that u(α̃) > u(α̂) = u(α). Therefore, action α is not

optimal.
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Step 3. Action α ∈ A is optimal if the following statements are true:

(1) Mα = {v1, v2}

(2) Sα ⊆ arg max
a∈Pv1\Pv2

U [E(a, v2), v2] ∪ arg max
a∈Pv2\Pv1

U [E(a, v1), v1] .

Proof of Step 3. Consider any other mixed action α̃ and suppose by contradiction

that u(α̃) > u(α). By (1), it must be that α̃ �v1 α and α̃ �v2 α. By (2), α̃ �v1 α

implies that

∑
a∈Pv2\Pv1

α̃(a) > ∑
a∈Pv2\Pv1

α(a).

Similarly, by (2), α̃ �v2 α implies that

∑
a∈Pv1\Pv2

α̃(a) > ∑
a∈Pv1\Pv2

α(a).

Therefore, it must be that

∑
a∈Pv2\Pv1

α̃(a) + ∑
a∈Pv1\Pv2

α̃(a) > ∑
a∈Pv2\Pv1

α(a) + ∑
a∈Pv1\Pv2

α(a) = 1,

where the last equality holds by (2). Consequently, we obtained a contradiction.

Proof of Proposition 9

Assume that A = {a, b} andW = {v1, v2}.

Step 1. If randomization is strictly beneficial, then there is no utility v ∈ {v1, v2} such

that Pv = {a, b}.

Proof of Step 1. See Step 1 in the proof of Proposition 7.

Step 2. If randomization is strictly beneficial, then either a �v1 b and b �v2 a, or b �v1 a

and a �v2 b.

Proof of Step 2. Suppose that it is not true that either a �v1 b and b �v2 a, or

b �v1 a and a �v2 b. If a %v1 b and a %v2 b, for all mixed actions α ∈ A, and for all

v ∈ {v1, v2}, we have

U [E(a, v), v] ≥ U [E(α, v), v] ≥ u(α),
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where the first inequality holds because a %v1 b and a %v2 b, the second inequality

by definition of u(·). Consequently, u(a) ≥ u(α) and randomization is not strictly

beneficial. If instead b %v1 a and b %v2 a, for all mixed actions α ∈ A, and for all

v ∈ {v1, v2}, we have

U [E(b, v), v] ≥ U [E(α, v), v] ≥ u(α),

where the first inequality holds because b %v1 a and b %v2 a, the second inequality

by definition of u(·). Consequently, u(b) ≥ u(α) and randomization is not strictly

beneficial.

Step 3. Randomization is strictly beneficial if the following statements are true:

(1) There is no utility v ∈ {v1, v2} such that Pv = {a, b}.

(2) Either a �v1 b and b �v2 a, or b �v1 a and a �v2 b.

Proof of Step 3. By (1), either Ma = {v1} and Mb = {v2}, or Ma = {v2} and

Mb = {v1}. Without loss of generality, assume Ma = {v1} and Mb = {v2}. Then it

must be that b �v1 a. Otherwise, by (2) we have a �v1 b and b �v2 a. This implies

that

U [E(b, v2), v2] > U [E(a, v2), v2] > U [E(a, v1), v1] > U [E(b, v1), v1] ,

where the first strict inequality holds because b �v2 a, the second strict inequality

because Ma = {v1}, and the third strict inequality because a �v1 b. However,

U [E(b, v2), v2] > U [E(b, v1), v1] contradicts Mb = {v2}. Therefore, it must be that

b �v1 a and by (2) a �v2 b. Without loss of generality, assume that u(a) ≥ u(b).

Define a new mixed action αλ parametrized by λ ∈ (0, 1) such that αλ(a) = 1− λ

and αλ(b) = λ. Notice that for any λ ∈ (0, 1), αλ �v1 a. Moreover, for λ small

enough, Mα̃ = {v1}. Therefore,

u(αλ) = U [E(αλ, v1), v1] > U [E(a, v1), v1] = u(a) ≥ u(b),

proving that randomization is strictly beneficial.
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Proof of Corollary 1

If incentives to randomize are strict, by Proposition 9 either a �v1 b and b �v2 a, or

b �v1 a and a �v2 b. Given that a is a mean-preserving spread of b, then either v1

is strictly concave and v2 is strictly convex, or vice versa. In any case, a C-EU DM

is neither risk averse, nor risk seeking.

Proof of Corollary 2

By Proposition 6, if α is optimal, then Mα = {v1, v2}. Suppose that Mα = {v1, v2}.

Given that randomization is strictly beneficial, either a �v1 b and b �v2 a, or b �v1

a and a �v2 b. Without loss of generality, assume a �v1 b and b �v2 a. Consider

any other mixed action α̃ 6= α. If α̃(a) > α(a), then α �v2 α̃ and u(α) > u(α̃). If

instead α(a) > α̃(a), then α �v1 α̃ and u(α) > u(α̃). Therefore α is optimal and

unique.

Proof of Corollary 3

Let WA = {v1, v2} and WB = {w1, w2}. Assume that (α, β) is a mixed Nash

equilibrium of G.

Step 1. If uB(β, α) > max{uB(b1, α), uB(b2, α)}, then α ∈ Āo.

Proof of Step 1. Suppose that α 6∈ Āo. Then, either b1 %w,α b2 for all utilities

w ∈ WB or vice versa. In both cases, by Proposition 9, incentives to randomize for

player B are not strict.

Step 2. If α ∈ Āo, then uB(β, α) > max{uB(b1, α), uB(b2, α)}.

Proof of Step 2. Suppose that α ∈ Āo. Then, either b1 �w1,α b2 and b2 �w2,α b1, or

b2 �w1,α b1 and b1 �w2,α b2. Without loss of generality, assume that the first case

holds. By Proposition 9, it is enough to show that there is no utility w ∈ WB such
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that Pw,α = SB. By contradiction, suppose that Pw1,α = SB. Then, we have

uB(b1, α) = U [Eα(b1, w1), w1]

> U [Eα(β, w1), w1]

≥ uB(β, α),

where the first equality holds because Pw1,α = SB, the second strict inequality be-

cause b1 �w1,α b2 implies b1 �w1,α β, and the third weak inequality by definition of

uB(·, α). However, given that (α, β) is a mixed Nash equilibrium of G, this is not

possible.

Step 3. β ∈ B̄oif and only if then uA(α, β) > max{uA(a1, β), uA(a2, β)}.

Proof of Step 3. It follows from the same arguments that we use in Steps 1 and 2.

Proof of Corollary 4

Let X ⊆ Bo and assume that for all β ∈ X, incentives to randomize are strict for

player A. By Corollary 2, the unique optimal mixed action α of player A satis-

fies Mα = WA. This implies that α satisfies Eβ[α, vA] = Eβ[α, wA]. Solving this

equation for α yields the desired result.

Proof of Corollary 5

Let WA = {v1, v2} and WB = {w1, w2}. Assume that (α, β) is a mixed Nash

equilibrium of G.

Step 1. If (α, β) is strict, then it is efficient.

Given that (α, β) is a strict mixed Nash equilibrium, given the correct conjec-

tures, incentives to randomize are strict for both players, and actions α and β are

optimal. By Corollary 2, α and β are the unique optimal actions and therefore they

are efficient. Consequently, the equilibrium (α, β) is efficient.

Step 2. If (α, β) is is efficient, then it is neither weak nor partially strict provided that Āo

and B̄o are non-empty.
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Suppose that (α, β) is a weak or partially strict mixed Nash equilibrium. We

show that (α, β) is not efficient. Given that (α, β) is not a strict equilibrium, there

exists one player for which randomization is not strictly beneficial in equilibrium.

Without loss of generality, assume that this is true for player A. That is, given the

correct conjecture β, we have

uA(α, β) = max{uA(a1, β), uA(a2, β)}.

By Corollary 3, it must be that either β = min(B̄) or β = max(B̄). Given that B̄o is

non-empty, these two quantities are distinct. In both cases, it must be the case that

one utility inWA is indifferent between the pure actions a1 and a2, while the other

utility inWA strictly prefers one of the two actions. Consequently, one of the two

pure actions Pareto dominates action α inWA, proving that action α is not efficient.

Therefore, also the mixed Nash equilibrium (α, β) is not efficient.
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